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EXECUTIVE SUMMARY  
 

This document reports the results corresponding to the work realized inside the scope of tasks T2.1 
and T2.2 from WP2 of TRUMPET “Privacy-armored AI algorithms and models.” These results are 
classified as two main different outcomes associated to each task: 
 

• T2.1 Identification of AI (Artificial Intelligence) models and aggregation methods for 
Federated Learning (FL): We survey the state of the art in algorithms and tools for Federated 
Learning. Then, we identify and provide a list of the most adequate AI models to be used for 
the implementation of the TRUMPET platform and the different medical use cases. 

• T2.2 Research of FL-tailored PET methods and tools: We survey the state of the art in PETs 
(Privacy Enhancing Technologies), and research their optimal application into the Federated 
Learning pipeline of the TRUMPET platform. 

 
In relation to the T2.1 outputs, the document surveys the most relevant ML (Machine Learning) 
algorithms in FL for TRUMPET purposes. In particular, a detailed list of AI models and aggregation 
methods is presented, and a selection of the best candidates is made taking into account the 
requirements imposed by the TRUMPET use cases. This selection also includes a review of the 
most relevant FL frameworks and their adequacy to the needs of TRUMPET. 
 
In relation to the T2.2 outputs, the document contains a description of the state of the art of several 
modern PET methods which are relevant for the FL scenario. First, a study of the advantages and 
shortcomings of each individual PET technique for FL is included. The list of PET techniques 
comprises technologies like Homomorphic Encryption, Secure Multi-Party Computation, Differential 
Privacy, Private Coded Distributed Computing and Zero-Knowledge Proofs. In addition to the 
analysis of trade-offs and privacy guarantees provided by each PET technique, the document 
identifies a list of software tools and libraries for the implementation of each PET method. 
 
Finally, the last part of the document reports the possibility of working with a combination of several 
of the studied PET technologies. Each technique is classified according to the guaranteed privacy 
property, and it is discussed how a higher privacy protection can be obtained by combining at least 
two complementary techniques. The document does not describe all possible combinations, but 
focuses instead on some combinations which are of particular interest for TRUMPET. 
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1 Introduction 

This document reports the results corresponding to the work realized inside the scope of tasks T2.1 
and T2.2 from the WP2 of TRUMPET “Privacy-armored AI algorithms and models.” Namely, this 
work package is in charge of doing research on and developing the FL-tailored AI models and 
algorithms with privacy guarantees, which will be integrated and validated later in the TRUMPET 
platform (WP4). 

As we can see in Figure 1, this work of WP2 in private-armored FL algorithms has a high dependency 
on the elicited requirements from WP1 (see next Subsection 1.1) and, similarly to WP3, produces 
direct outputs for the correct development, piloting and validation of the TRUMPET platform, which 
will be reported in the corresponding deliverables of WP4. 

 

 

Figure 1 – WP2 and its relationship with other WPs of TRUMPET. 

 

 

More specifically, and among the initial objectives established for WP2, this document aims at 
fulfilling the first two WP2 general objectives: 

• Survey the state of the art; identify and evaluate AI models to be used in the FL setting. 

• Advance the knowledge, expertise and application of different non-encryption/encryption-
based PET methods to be included in the armored FL setting. 

Consequently, the work produced in this deliverable feeds the privacy-preserving FL algorithms and 
models (see Figure 2) to the other WP2 tasks T2.3, T2.4 and T2.5, which are instead more focused 
on their design, development, test and final validation. 
 
 



 
 

 

 
12 

 

Figure 2 – Dependency between the tasks of WP2. 

 

 

In summary, the results of this deliverable D2.1 can be divided in two main different types of 
outcomes:   

• Outcomes from Task T2.1 “Identification of AI (Artificial Intelligence) models and aggregation 
methods for Federated Learning (FL)”:  

o A survey of the state of the art in algorithms and tools for Federated Learning.  
o Identify and provide a list of the most adequate AI models and algorithms to be applied 

on the TRUMPET platform and medical use cases.  

• Outcomes from Task T2.2 “Research of FL-tailored PET methods and tools”:  
o Survey of the state of the art in PETs (Privacy Enhancing Technologies).  
o Research their optimal application into the FL pipeline of the TRUMPET platform. 

1.1 Starting point and structure of the deliverable 

In relation to the T2.1 outputs, a set of AI models and algorithms relevant for the TRUMPET use 
cases is already very succinctly described in D1.1-Sec.3. Also, D1.1-Sec.7 gives a first description 
of the different use cases together with their datasets. 

Section 2 of the present document extends the work carried out in D1.1 and D1.3 by surveying the 
most relevant ML (Machine Learning) algorithms in FL for TRUMPET purposes. In particular, a 
detailed list of AI models and aggregation methods is presented, and a selection of the best 
candidates is made considering the requirements imposed by the TRUMPET use cases. This 
selection also includes a review of the most relevant FL frameworks and their adequacy to the needs 
of TRUMPET use cases. 

In relation to the T2.2 outputs, D1.1-Sec.6 sketches the first requirements and some important 
general properties of PETs for TRUMPET. Also, D1.1-Sec.5 sets forth the importance of providing 
protection against several types of inference attacks in FL.  

Section 3 of the present document gives more details and contains a description of the state of the 
art of several modern PET methods which are relevant for the FL scenario. First, a study of the 
advantages and shortcomings of each individual PET technique for FL is included. The list of PET 
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techniques comprises technologies like Homomorphic Encryption, Secure Multi-Party Computation, 
Differential Privacy, Private Coded Distributed Computing and Zero-Knowledge Proofs. In addition 
to the analysis of trade-offs and privacy guarantees provided by each PET technique, the document 
identifies a complete list of software tools and libraries for the implementation of each PET method. 

Finally, Section 4 of the document reports the possibility of working with a combination of several of 
the studied PET technologies. Each technique is classified according to the guaranteed privacy 
property, and it is discussed how a higher privacy protection can be obtained by combining at least 
two complementary techniques. The document does not describe all possible combinations but 
focuses instead on some combinations which are of particular interest for TRUMPET. 
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2 A review of the state of the art and beyond in FL 

The term Federated Learning (FL) may have somewhat different meanings in the literature 
corresponding to different areas. At times, it predominantly serves as a synonym for various forms 
of distributed machine learning, while in other instances, it is closely linked to tasks specifically 
related to neural networks. Other times, it is associated with forms of distributed machine learning 
that involve a central coordinator. In the context of TRUMPET, we will use FL to refer to any machine 
learning using data from multiple data owners and involving a central coordinator.  

In this project [PRP+23], we are interested in settings where each of several data owners has a 
database of sensitive data, and they want to collaborate to perform data analysis without revealing 
their data to others. This setting is called privacy-preserving federated learning (PPFL), but whenever 
it is clear from the context, we may just call it FL.  

It is helpful to distinguish the data user (sometimes called the “researcher” in TRUMPET) which 
submits queries to the system, from the coordinator of the computation (also sometimes called the 
“aggregator”), even if sometimes the same node in the network may fulfil several roles.  

The objective of an FL system is the same as the objective of the original ML system that it tries to 
improve, and which would build the same model on data that is centralized on a single machine. 
While the objectives are the same, the FL approach poses new challenges.  

An FL system makes use of several elements:   

• There is the “data owner” entity, which locally computes statistics or trains a partial model on 
its own data.  

• There is the “communication” layer, where the several data owners and the coordinator 
exchange information, e.g., to aggregate statistics over all data owners. 

• There is the “coordinator” entity, where the coordinator decides upon the next actions, and 
aggregates all information into the final machine learning model.  

There are situations where the structure is more complex, e.g., when there are so many data owners 
that it becomes impractical to let them operate in an unstructured group, or when for cryptographic 
reasons an external trusted party is needed, but unless explicitly mentioned otherwise we will not 
need or consider these in TRUMPET [PRP+23]. 

The way in which these three components of an FL system interact strongly depends on the ML 
algorithm at hand.  We can divide ML algorithms into the following categories:  

• ML algorithms which can be described in terms of averages.  These are algorithms where for 
the coordinator it is sufficient to know a set of averages (also called U-statistics with kernel 
of degree 1) [Lee90, CCB16]. Examples of ML models for which such algorithms are available 
include linear regression, decision trees, Bayesian networks and Gaussian processes. For 
such algorithms, it is sufficient for every data owner to compute locally a set of statistics on 
its data, after which the statistics can be averaged over all data owners and the coordinator 
can construct the ML model from the obtained statistics.  
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• ML algorithms which first establish an objective function and then use an optimization 
procedure to find the optimal values of a set of parameters of that objective function.  
Examples of ML models for which such algorithms are available include logistic regression 
and neural networks [HTF09]. 

• ML algorithms which require pairwise access to training instances. This includes algorithms 
which can be expressed in terms of U-statistics with kernel of degree 2, e.g., the computation 
of receiver operator characteristic (ROC) curves and the computation of the Kendall tau 
statistic [CCB16, CBSC15]. Other algorithms which may need access to pairs of training 
instances are kernel-based machine learning algorithms in dual space, e.g., certain support 
vector machine algorithms.  If the number of data owners is high, iterating over all pairs of 
training instances may be expensive, so it is typically better to avoid this, e.g., reverting to 
approximation algorithms.  

• Others. There are other ML tasks not fitting in the above categories, e.g., prediction where 
one party (or collection of parties) has a model and another party an instance on which the 
model should be applied to obtain a prediction.    

In Sections 2.1 and 2.2 we will discuss the first major types of federated machine learning tasks. 

 

2.1 Aggregation 

In the task of federated aggregation, all data owners have some data (a scalar, vector, matrix or 
more compound object) and the goal is to ensure that a data user receives the aggregate (typically 
sum or average) of these data.  

This is a fundamental operation in FL, both for algorithms which can be decomposed directly into 
averages and for more complex algorithms such as stochastic gradient descent (SGD) algorithms 
which frequently need to add up gradients computed by data owners.    

If there is a trusted central curator, the data owners can simply send their gradients to that trusted 
party.  If data owners have no trust at all, they can add local differential privacy (LDP) noise [DJ13] 
to their data, but as LDP typically requires a large amount of noise, this usually is not desirable from 
a utility point of view.  

If data owners cannot trust the aggregator, then sending cleartext data without noise is not advisable, 
even if the data is constituted only of gradients rather than the originally sensitive information 
[MSCS19, NSH19].  

There has been a lot of interest in strategies which do not require to fully trust parties, resulting in 
several approaches for different security and threat models.  One line of work employs a trusted 
shuffler to create anonymity, which can be used to obtain increased privacy [EFMRT19, GKMP20]. 
While interesting for theoretical analysis, this approach only replaces the need to trust an aggregator 
by the need to trust a shuffler, or a shuffling system consisting of several nodes.  Another line of 
work studies secure aggregation methods relying on cryptographic techniques [DKMMN06, CSS12, 
SCRCS11, BIKMMPRSS17, JWEG18].  All these strategies assume an honest-but-curious (also called 
semi-honest) security model and/or have a significant computational cost.  Recently, more efficient 
approaches have been studied which at the same time are robust under more malicious models, 
e.g., when one assumes at most a fixed fraction of the parties is malicious [SBR22].  
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Hence secure aggregation methods exist which, depending on the threat model, can deliver the 
aggregation of the data owners’ data without revealing the individual terms or intermediate results.  
Sometimes it is undesirable to reveal this aggregate immediately, as in order to achieve statistical 
privacy (e.g., differential privacy) one may want to add noise first.  One challenge is that none of the 
parties is allowed to know the noise term, as otherwise this party could act as adversary and subtract 
it from the published result.  Fortunately, various strategies exist to generate and add noise privately 
[SPHR23]. 

 

 

2.2 Federated Optimization 

A number of machine learning models, such as logistic regression, neural networks and clustering 
models cannot be computed in closed form and are usually trained using iterative algorithms.  As 
(deep) neural networks are very popular currently, federated versions of methods such as stochastic 
gradient descent (SGD) received a lot of attention recently; while our discussion will focus mostly on 
these methods which can be directly applied to neural networks and logistic regression, very similar 
strategies can be applied to clustering models.  

The most privacy-preserving approach to federated optimization is to encrypt the complete set of 
computations over all iterations of the algorithm.  This is feasible, but rather computationally 
expensive, especially for very large datasets. The noise needed to be added to the resulting model 
is then the same as in the trusted curator setting where a trusted party obtains all data, learns the 
model centrally and privatizes it before publishing [CMS11, KST12].   

Sometimes it is undesirable to opt for the trusted curator or complete encryption of the algorithm 
execution.  In such cases, a popular strategy is to securely compute a gradient based on all data 
and to privatize this gradient before it is received by the aggregator who will apply it to the model.   
To aggregate securely, techniques such as those described in Section 2.1 can be used.  Once 
privatized gradients can be computed as a subroutine, high-level SGD algorithms mainly need to 
keep track of the privacy budget, either using Dwork’s composition rule [BST14] or more efficiently 
using Rényi differential privacy [ACGMMTZ16].  Several optimizations are possible on this basic idea 
to improve the privacy-utility trade-off, e.g., by clipping the gradient norm [MMRHA17, ATMR22] or 
by adapting the learning rate to the privacy noise properties [KH20, LK18, YLPET19].  

Similar approaches have been studied when considering coordinate descent [MBST22] rather than 
gradient descent, one advantage of federated coordinate descent compared to gradient descent is 
that the communication cost per iteration is clearly smaller. 

 

2.3 Data Owner side computation 

Many machine learning algorithms require computation on the side of the data owner, which often 
involves both querying the local data and combining it into a local feature or statistic.  Examples 
include the aggregation over the local dataset, or the computation of a gradient of a given model 
with respect to the local dataset (as is needed in SGD algorithms).  This data owner side computation 
is usually a subroutine of a more high-level federated algorithm such as an aggregation (See Section 
2.1) or federated optimization (See Section 2.2). 
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In the semi-honest model, local computation inside the data owner does not pose any risk, as we 
assume the data owner performs the computations correctly and no information leaves its premises. 

In more malicious models, one a priori does not trust the data owner to perform these local 
computations correctly, and one needs to consider the possible attacks of (a) using incorrect data or 
(b) making incorrect computations.  Both attacks have a similar effect and could be called data or 
model poisoning.  To mitigate these attacks, one can require that the data owner proves that both 
data and computations are correct. 

Proving that computations are correct without disclosing the underlying data is possible using zero 
knowledge proofs (ZKP). 

As the data usually is private, verifying that the data is correct is usually more difficult.  Still, a few 
partial solutions exist.  First, one can require ZKP proving that the data is in the appropriate domain, 
e.g., a range proof to prove that input data is in a specified interval [MKWK19]. Second, one can 
compute the distribution of values over many records or data owners and compare whether this 
distribution is significantly different from what can be expected for such values [SPHR23]. This allows 
to detect outliers or outlier data owners but cannot be used to detect incorrect individual records as 
exceptional records do exist.  Third, one can require that data owners commit to input data.  While 
this has no immediate effect in a computation, it implies, in a next computation using the same basic 
input data, that the same value must be used.  Such consistency requirement helps to limit the 
opportunity for data poisoning. 

 

2.4 Frameworks, tools and software for Cross-Silo FL 

Several state-of-the-art frameworks and tools for FL are listed below. They are divided in two 
categories, Research-oriented software and Production-oriented software. 

 

2.4.1 Research-oriented software 

• TensorFlow Federated [TensorFlow19] specifically targets research use cases, providing 
large-scale simulation capabilities as well as flexible orchestration for the control of sampling. 

• FedML [HLS+20] is a research-oriented library. It supports three platforms: on-device training 
for IoT and mobile devices, distributed computing, and single-machine simulation. For 
research diversity, FedML also supports various algorithms (e.g., decentralized learning, 
vertical FL, and split learning), models, and datasets. 

• PySyft [RTD+18] is a Python library for secure, private Deep Learning. PySyft decouples 
private data from model training, by using federated learning, differential privacy, and secure 
multi-party computation (SMPC) within PyTorch. PySyft aims to be extensible such that new 
FL, Secure Multi-Party Computation, Homomorphic Encryption, or Differential Privacy 
methods can be flexibly and simply implemented and integrated. 

• Sherpa.ai [RSJ+20] Federated Learning and Differential Privacy Framework is an open-
source federated learning and differential privacy framework which provides methodologies, 
pipelines, and evaluation techniques for federated learning. 



 
 

 

 
18 

• PyVertical [RHP+21] is a project focusing on federated learning with data partitioned by 
features (also referred to as vertical partitioning) in the cross-silo setting. 

• LEAF [CWL+18] is a modular benchmarking framework for learning in federated settings. It 
includes a suite of open-source federated datasets, a rigorous evaluation framework and a 
set of reference implementations. 

• DecLearn [Declearn22] is a modular open source, INRIA-developed library, currently mostly 
focused on stochastic gradient descent (SGD) and coordinate-descent algorithms and their 
variants in a federated setting (one data user/researcher node, many data owner nodes). 

 

2.4.2 Production-oriented software 

• FATE [FATE19] (Federated AI Technology Enabler) is an open-source project intended to 
provide a secure computing framework to support the federated AI ecosystem. 

• PaddleFL [PaddleFL19] is an open-source federated learning framework based on 
PaddlePaddle. In PaddleFL, several federated learning strategies and training strategies are 
provided with application demonstrations. 

• Clara [NVIDIAClara19] Training Framework includes the support of cross-silo federated 
learning based on a server-client approach with data privacy protection. 

• IBM Federated Learning [LBT+20] is a Python-based federated learning framework for 
enterprise environments, which provides a basic fabric for adding advanced features. 

• Flower framework [BTM+20] supports implementation and experimentation of federated 
learning algorithms on mobile and embedded devices with a real-world system conditions 
simulation. 

• Fedlearner [Fedlearner20] is an open-source federated learning framework that enables joint 
modelling of data distributed between institutions. 

• OpenFL [RGF+21] is a Python 3 framework for Federated Learning. OpenFL is designed to 
be a flexible, extensible and easily learnable tool for data scientists. 

• SubstraFL [SubstraFL23] is a federated learning Python library that leverages Substra to run 
federated learning experiments at scale on real distributed data. Its main usage is therefore 
in production environments. 

• FedBiomed [CVC+23] is a federated system mostly using existing techniques such as 
libraries like DecLearn listed above, for use in medical applications. 
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2.4.3 Which frameworks suit the needs of TRUMPET? 

After studying the above-mentioned FL software tools, PySyft and FATE seem to be the FL tools 
which better suit the needs of TRUMPET [PRP+23]. Below we outline our findings with a comparison 
between both and the justification for our preference for PySyft. 

 

2.4.3.1 PySyft 

• Pros:  

o Modularity and Flexibility: PySyft is designed to integrate with popular deep learning 
libraries like PyTorch, enabling users to leverage its features within their existing 
workflow. 

o Research Focus: PySyft is developed with an emphasis on academic and research-
oriented applications, making it suitable for exploring novel privacy-preserving 
techniques. 

o Extensive Library of Privacy Tools: PySyft provides a wide range of privacy-
enhancing tools, including federated learning, secure multi-party computation, and 
differential privacy mechanisms. 

o Community Support: PySyft is backed by the OpenMined community, which consists 
of researchers, developers, and practitioners interested in advancing privacy-
preserving AI. 

o System Design: The design of the PySyft open-source code base is well structured 
and developed on segregated interfaces, which makes easier to implement and 
incorporate new PET methods. Also, the system architecture is built to enable that 
different service components can be used or not based on the specific needs. 

• Cons:  

o Learning Curve: PySyft's flexibility might lead to a steeper learning curve for 
newcomers, especially those who are not familiar with the underlying concepts of 
privacy-preserving techniques. 

o Limited Industrial Focus: While PySyft can certainly be used for industrial 
applications, its primary focus has been on research and exploration, which might 
result in fewer pre-built solutions tailored for specific industries. 

 

2.4.3.2 FATE 

• Pros:  

o Industrial Applications: FATE is explicitly designed to cater to real-world industrial use 
cases, making it a suitable choice for enterprises looking to implement privacy-
preserving AI solutions. 
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o Multi-Language and Multi-Framework Support: FATE supports multiple programming 
languages and popular deep learning frameworks, offering greater flexibility for 
different development environments. 

o Ready-Made Algorithms: FATE offers a range of pre-implemented federated learning 
algorithms and privacy-preserving techniques, saving time and effort in algorithm 
development. 

• Cons: 

o Less Flexibility: FATE's focus on providing a comprehensive platform might lead to 
less flexibility compared to PySyft, particularly for researchers and developers who 
want to experiment with custom privacy techniques. 

o Complexity for Beginners: FATE's extensive features and algorithms could be 
overwhelming for beginners or those who are new to the field of federated learning. 
In addition, the documentation for the most recent functionalities remains insufficient. 

 

2.4.3.3 Comparison: PySyft vs FATE 

• Use Case Focus: 

o PySyft: Primarily suited for research and experimentation, making it attractive to 
academia and projects exploring cutting-edge privacy methods. 

o FATE: Geared towards industrial applications and practical implementations, 
particularly in industries like finance. 

• Flexibility vs. Comprehensive Platform: 

o PySyft offers high flexibility for customised privacy solutions but might require more 
expertise and time for implementation. 

o FATE provides a comprehensive platform with a wide range of pre-built algorithms 
and techniques, suitable for faster deployment but with potentially less room for 
customization. 

• Community and Support: 

o PySyft is backed by the OpenMined community, known for its active involvement in 
privacy-preserving AI research. 

o FATE is supported by WeBank and has lesser community support. 

• Learning Curve: 

o PySyft might have a steeper learning curve due to its customizable nature and the 
limited documentation which is available for the most recent versions. 
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o FATE's focus on providing ready-made solutions might make it more approachable 
for those new to the field. 

Adequacy of Pysyft: PySyft is a modular federated learning (FL) framework that exhibits a high 
degree of modularity, offering various modules that can be combined and extended to build 
customized FL solutions. This modular design enhances flexibility, scalability, and ease of 
integration. Next, we delve into this justification with an example: 

Example for Secure Aggregation in PySyft: Consider a scenario where a healthcare organization 
wants to perform federated learning on medical data distributed across different hospitals. They are 
concerned about data privacy and security. PySyft's modularity comes into play: 

1. Secure Aggregation Module: PySyft provides a module specifically designed for secure 
aggregation. The secure aggregation module takes care of basic cryptographic protocols and 
privacy-preserving mechanisms. 

2. Data Privacy Module: In the healthcare scenario, data privacy is paramount. PySyft offers 
basic privacy-preserving modules like Differential Privacy to ensure that sensitive patient data 
is not compromised during the training process. 

3. Custom Communication Protocols: Hospitals might have specific communication 
requirements based on their network infrastructure. PySyft's modular communication 
protocols allow organizations to choose the most suitable protocol for their setup, whether it 
is WebSockets, HTTP, or others. 

4. Flexible Model Architectures: PySyft's modular approach extends to model architectures as 
well. Hospitals can implement custom model architectures using PyTorch, and then integrate 
them seamlessly with PySyft's FL framework, incorporating differential privacy or secure 
aggregation as needed. 

5. Community Contributions: The modular design of PySyft encourages the community to 
contribute additional modules. Suppose a hospital requires a specialized privacy-preserving 
technique for its use case. They can collaborate with the PySyft community to develop and 
integrate a new module that caters to their requirements. 

6. Scalability and Parallelism: With PySyft's modular architecture, organizations can distribute 
the training workload across multiple nodes. They can leverage PySyft's built-in support for 
parallel execution to achieve faster training times without compromising privacy. 

 

2.5 Selection of AI algorithms and models 

Based on the above literature study and the requirements reported in D1.1/D1.3, we selected which 
models and algorithms will be considered in our research (WP2) and our platform (WP4) through the 
work in T2.1. 

As a reminder, D1.1 concluded that the functionalities required for the TRUMPET use cases [PRP+23] 

could include computation of statistics, linear regression, logistic regression, decision trees, random 
forests, survival analysis (e.g., Cox regression), feature selection, dimensionality reduction (e.g., 
clustering) and validation.  
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We can categorize the algorithms needed or typically used for these tasks into a number of major 
categories: 

• Methods which can be decomposed into the computation of U-statistics (which is possible 
using direct secure aggregation): computation of statistics, linear regression (on small 
domains), decision trees and random forests. 

• Iterative optimization strategies, often based on stochastic gradient descent (SGD), which 
are popular to address linear regression (on high dimensional data), logistic regression, Cox 
regression, and clustering for dimensionality reduction. Of these, only the latter is not gradient 
based, and only Cox regression requires a comparison operator as part of the core 
calculation (which may affect the choice of the PET strategy, see Section 3). 

• Wrapper strategies, such as for cross-validation, hyperparameter search or similar purposes. 

• Specific (other) algorithms: randomization-based validation, and optionally, principal 
components analysis (PCA). 

Next to these models/algorithms required for the TRUMPET use cases, it is useful to support in 
general other popular methods, as this will be beneficial for the exploitation of the platform.  
Therefore, we decided to also support (simple) neural networks.  The additional effort needed is 
relatively moderate, as SGD is the most popular algorithm for training neural nets.  This also gives 
the additional option to support with some additional effort a (variational) auto-encoder based 
dimensionality reduction, offering an alternative to the PCA and clustering algorithms mentioned 
above. 

To determine which exact variant of these models/algorithms is best suited for the use cases (and 
hence are minimally required), pre-pilot studies on public data or studies on patient data approved 
by ethical committees will be carried out, so the right variants can be implemented by the time the 
federated learning platform will be validated. 

Currently, we expect the following models and algorithms to be important for the TRUMPET platform, 
even though further fine tuning may be needed depending on the results of further steps: 

 

2.5.1 Relevant AI models 

• Linear regression (including iterative algorithms): 
o Model: A linear model between features and target value is of the form y = wTx with 

x∈ℝn, y∈ℝ where w is the column vector of model parameters.  A common strategy is 

to find the w which minimizes Σi(wTxi - yi)2 + λ||w||2 where λ is a regularization 

(hyper)parameter. 
o Algorithms:  

▪ If the U-statistics XTX and XTY are feasible to be computed (where XT = [x1 ... 
xn] and YT = [y1 ... yn]), i.e., when the dimension of XTX is not too large, then 
one can compute the optimal w in closed form: w = (XTX + λI)-1 XTY. 

▪ If the dimension is too large to compute/store the correlation matrix XTX, then 
one can follow an iterative approach, e.g., using stochastic gradient descent 
(SGD).   

• Logistic regression: 
o Model: A logistic regression model is of the form y = S(θTx) where θ is the parameter 

vector and S(t) = 1/(1 + e-t) is the logistic function.  
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o Algorithms: In contrast to linear regression, a closed form solution is not possible 
here, so one normally uses an iterative algorithm, e.g., SGD. 

• Random forests (including decision trees): 
o Model: A random forest is an ensemble of decision trees (which are learnt with some 

randomized elements).  A decision tree is either a predicted target value or an “IF test 
THEN t1 ELSE t2” structure, where test is a binary function on instances, and t1 and t2 
are decision trees.   

o Algorithms: random forests are typically learnt by iteratively learning decision trees 
and then building a model which averages their predictions. A decision tree is typically 
learnt top-down, where in each iteration one decides whether a sufficiently interesting 
test can be found, if not one generates a leaf (a fixed prediction); else, one selects a 
test (according to a heuristic and some randomization) and then sorts all instances 
into a subset on which the test returns and a set on which the test returns, upon which 
one recursively learns decision trees on the subsets. 

• Survival analysis: 
o Model: In survival analysis models are also considered, e.g., linear or logistic 

regression, but data is censored in some ways.  The classic example is a medical 
study where patients may leave the study before an event of interest occur, so one 
only knows that the event happened after a given time (or did not happen at all).  A 
popular model is Cox regression. 

o Algorithm: the best training strategy depends largely on properties of the application 
at hand. At the time of writing, we are in the context of (pre-)pilot studies still 
examining which training strategies will be the most useful to implement. 

• Neural networks: 
o Model: Neural networks are networks of neurons connected by links. The input is 

provided to the input nodes which propagate the value via their outgoing links; 
intermediate nodes that received values from all their incoming neighbors compute 
their output and send it to their outgoing neighbors until all output nodes have 
computed their values.  Neural networks can also be potentially used in a survival 
analysis context. 

o Algorithms: SGD is a popular strategy to train neural networks.  Dedicated algorithmic 
strategies exist for survival analysis. 

• Dimensionality reduction: 
o Model: Dimensionality reduction offers transformations from high dimensional feature 

spaces into lower dimensional spaces.  This is typically useful when the number of 
features is much larger than the number of instances, e.g., when using genomic data.   

o Algorithms: Several options can be considered, e.g., principal component analysis 
(PCA), linear discriminant analysis (LDA), or even auto-encoder based strategies. At 
the time of writing, it is still unclear which strategies are best suited for the TRUMPET 
use cases.   

• Variational auto-encoders: 
o Model: auto-encoders are models that first map instances into vectors in a lower 

dimensional space and then map them back into the original instance space, i.e., they 
are models of the form f = D ° E where E: ℝn→ℝm (with m < n, where ℝm is called the 
latent space) and D: ℝm→ℝn, where the objective is that instances of the dataset are 
mapped by f on nearby instances. Variational auto-encoders follow a probabilistic 
approach, where one is looking for a model that maximizes the likelihood of the given 
dataset being generated when transforming a sample drawn from the prior on the 
latent space.  While variational auto-encoders can be used as generative models and 
often provide better results for tasks as synthetic data generation, in the TRUMPET 
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pilots we at most need decent dimensionality reduction of genomic data, and hence 
we will need to investigate which model is both sufficiently simple (not over-fitting on 
our small dataset) and sufficiently effective. 

o Algorithms:  auto-encoders and related models are normally modelled and trained as 
neural networks, e.g., using SGD style algorithms. 

 

2.5.2 Relevant FL algorithms 

• Secure aggregation: 
o Section 2.1 provides a discussion of (secure) aggregation algorithms.  As secure 

aggregation is a basic building block, we will use multiple existing implementations 
depending on the threat model, and implement new ones where appropriate, 
especially to improve robustness against inference attacks by colluding adversaries.  
A further extension seems needed for survival analysis where secure sums over pairs 
of instances are required. 

• SGD:   
o We discussed SGD already in Section 2.2. We expect to make further improvements 

to the state of the art, especially in terms of statistical privacy, both to improve the 
utility for a given privacy budget and to consider new privacy metrics developed in 
WP3. 

• Wrapper algorithms (e.g., validation): 
o To provide a complete researcher dashboard, it is important that the researcher can 

perform more than stand-alone algorithms, as they are often described in the 
literature. For example, algorithms like cross-validation and other processes, which 
are essentially repeated executions of baseline machine learning algorithms.   

• Comparison operator for use in core computation of models (e.g., survival analysis). 
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3 Privacy Enhancing Technologies for Armored FL 

In the TRUMPET project [PRP+23] we will apply several Privacy Enhancing Technologies to the 

pipeline of FL so as to construct an Armored FL Framework with better privacy guarantees. These 
techniques can be applied either individually (see Section 3.1) or can be combined (see Section 4) 
to get a better trade-off between privacy and accuracy. This section focuses on the former, by 
describing in detail each of the individual PET techniques. We also include a list with relevant 
available software tools and libraries for each discussed technique (see Section 3.2). 

 

3.1 Study of stand-alone PET components for AFL 

We review next the current state of the art of several types of PET technologies. They will be used 

in TRUMPET to strengthen the baseline privacy provided by the FL algorithms presented in Section 

2, namely Homomorphic Encryption, Secure Multi-Party Computation, Code-based Encryption and 

Differential Privacy. 

 

3.1.1 Homomorphic Encryption 

Homomorphic Encryption (HE) deals with the problem of computing with encrypted data. A HE 
scheme basically consists of an encryption scheme with the peculiarity that some sort of computation 
can be directly performed over the ciphertext. HE schemes allowing to homomorphically compute 
only one type of arithmetic operation (addition or multiplication) were known since 1970 [RAD78], 
and in fact, schemes like Paillier [Paillier99] or ElGamal [ElGamal85] were widely used for that reason. 
The breakthrough came in 2009, when Gentry [Gentry09] showed that it was possible to construct a 
HE scheme where both additions and multiplications could be computed under encrypted data. 
Although the first proposed schemes were very far from being practical, the field evolved very rapidly, 
and subsequent schemes became faster at an ever-increasing rate. 

While FHE (Fully Homomorphic Encryption) schemes allowing for arbitrary computations are 
perfectly feasible, they are not practical enough yet. So, it is common practice to relax conditions 
and work instead with SHE (Somewhat Homomorphic Encryption) schemes, on which the number 
of operations to be evaluated is bounded beforehand.  

It is worth mentioning that current schemes are based on the LWE (Learning with Errors) [Regev09] 
and RLWE (Ring Learning with Errors) [LPR13] assumptions. So, as a byproduct of being based on 
Lattice-based problems, they are known to be resistant against quantum computers.  

Consequently, HE methods provide a very high level of privacy because the most privacy-sensitive 
information can be encrypted and, if further operations are needed, they can be directly done while 
the data is still encrypted. Additionally, computation can be performed, in theory, without having any 
accuracy loss on the results. 

On the contrary, HE methods also have some limitations:  

• Loss on precision: in many scenarios the computational cost could be very high, so it could 
be better to reduce the accuracy of the results as a trade-off to improve the efficiency.  
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• Message expansion: The size of the encrypted data can be much larger than the size of the 
data in the clear.  

• Engineering cost: Taking full advantage of the HE features can be very challenging [SKN+20]. 
In order to really enhance performance, it is usually required to make non-trivial changes on 
the data pipelines and algorithms, hence requiring the help of a HE expert. For example, 
current implementations use very refined representations by combining the RNS (Residue 
Number System) with NTTs (Number Theoretic Transforms) [PTP17, BPNB23]. 

Even so, HE is starting to become very practical and there are important efforts to bring HE into real 
applications. A clear example is the recently started process for the standardization of homomorphic 
encryption primitives [ACC+19].  

The standard covers important aspects of HE, ranging from concrete estimates of the bit security 
[APS15] together with parameter recommendations, the design of an API to easily develop HE-based 
applications and discussions regarding several potential application fields. The main HE schemes 
described are BGV [BGV12], BFV [Brakerski12, FV12], CKKS [CKKS17] and TFHE [CGGI16], where 
there is no definitive best choice and performance of each one is very dependent on the particular 
scenario.  

There is also a wide list of available HE libraries implementing the previous schemes and some more 
advanced functionalities. Some of the most important libraries are Microsoft SEAL [SEAL], HElib 
[HElib], HEAAN [HEAAN], PALISADE [PALISADE], Lattigo [Lattigo], NFLlib [FV-NFLlib], TFHE 
[TFHE], Concrete [Concrete], OpenFHE [OpenFHE], THFE-RS [TFHE-rs]. We can also find GPU-
based implementations as cuHE [cuHE] and a high-level compiler CHET [DSC+19].  

Regarding the use of HE to implement ML or FL applications [GLN12], we can already find in the 
literature several works dealing with important ML tools applicable to the different scenarios. Some 
examples include logistic regressions [WZD+16, KSKLC18, CGGT19], inference with neural networks 
as CryptotNets [GDLLNW16], and more complex training phases as the case of a SVM classifier 
[PBLCL20]. 

 

3.1.1.1 Basic HE building blocks 

Here we introduce a high-level primitive description of a common HE scheme. We also include 
some extra procedures and functions which are used in most of the lattice-based constructions. 
Thanks to this, our exposition for the multi-key variants of HE will be simplified in Section 4.1, and 
there we will only remark which are the main changes needed when working with several keys. 

Learning with Errors (LWE): The LWE distribution corresponds to (a, b = <a, s> + e), where a is 
vector of size n, uniformly random in the integers modulo q, s is the secret and e is sampled from 
the error distribution. See [Regev09] for more details. 

Ring Learning with Errors (RLWE): The RLWE distribution corresponds to (a, b = a s + e), where 
a is a uniformly random polynomial in Rq, s is the secret and e is a polynomial sampled from the 
error distribution. See [LPR10, LPR13] for more details. 

General HE primitives: A HE scheme is composed of a tuple of algorithms HE = (KeyGen, Enc, 
Eval, Dec), where lambda is the security parameter. 
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• HE.KeyGen(1^lambda) → (pk, sk, ek) 

• HE.Enc(pk, m) → c 

• HE.Eval(ek, f, c, c’) → ceval , where ceval = f(c, c’) 

• HE.Dec(sk, c) → m 
 

Table 1 – Notation used for HE 

 

HE NOTATION 

Initials or symbol Meaning 

pk Public Key 

sk Secret Key 

ek Evaluation Key 

pp Public Parameters 

lambda Security Parameter 

m Plaintext 

c Ciphertext 

 

 

3.1.2 Secure Multi-Party Computation 

Secure Multiparty Computation (SMPC) protocols allow a group of parties to jointly compute a 

function while also protecting the privacy of the participants' inputs. It was first introduced by Yao 

[Yao82] for the two-party case as a solution to the Millionaires Problem, and later generalized to the 

multi-party scenario by Goldreich, Micali and Wigderson [GMW87]. An important distinctive feature 

which distinguishes SMPC from other more conventional cryptographic schemes is that SMPC also 

seeks to protect against adversaries coming from the system itself, hence protecting the privacy of 

the participants' inputs from each other.  

The SMPC field covers a wide list of cryptographic techniques [EKR18] ranging from several higher 

and lower-level tools as Garbled Circuits (GC) [BMR90], Zero-Knowledge proofs [GMW87], 

commitments, oblivious transfer [Kilian88] and secret sharing [Shamir79], to name just a few.  

Actually, it is also worth mentioning that strictly speaking, homomorphic encryption techniques can 

be seen as a subset of SMPC, and many SMPC protocols make use of HE to work properly. Even 

so, there is a current trend to separate them because SMPC is usually seen as a mechanism to 

implement concrete policy enforcements among several parties which are interactively performing 

computation, while HE is usually seen as a mechanism allowing a data owner to securely outsource 

computation on his/her data. With this in mind, an exhaustive classification of the different SMPC 

protocols would require to take into account several parameters, as for example, the number of 

parties involved (mainly two-party or multi-party), the type of corruption (passive, active, covert), the 

number of corrupted parties (honest majority, dishonest majority), the mobility of the adversary 

(static, adaptive corruption), etc.  
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Although SMPC originally started as a theoretical curiosity, since the mid 2000's important 

improvements were made showing that SMPC applications were in fact possible [MNPS04]. The first 

important example of deployment in a real scenario was the implementation of the sugar beet auction 

in Denmark in 2008 [BCD+09]. Currently, the most practical general-purpose protocols are based on 

additive secret sharing, and the use of Beaver triples [Beaver91] to perform interactive multiplications. 

They divide computation in two main phases: (1) an offline phase on which some sort of correlated 

randomness is computed and distributed among the parties, and (2) an online phase on which given 

some participants' inputs the previous correlated randomness is consumed to perform the intended 

secure computation.  

The most representative example of the previous schemes is the case of the SPDZ protocol 

[DPSZ12] together with its different variants MASCOT [KOS16], Overdrive [KPR18] and SPDZ2k 

[CDESX18]. A common trait of all of them is their low computational cost. On the contrary, the number 

of interactions, and hence communication cost, grows with the number of parties and circuit depth, 

which makes the latter its weakest point in real scenarios.  

SMPC technology has made a huge progress in the last few years [MPCalliance], and there are 

already many companies offering SMPC-related solutions as Sharemind [Sharemind], Sepior [Sepior], 

Zcash [Zcash], Unbound [Unbound]. This also includes several frameworks and software 

developments as the SCAPI library [Libscapi], SCALE-MAMBA SMPC-system [Scale-Mamba], MP-

SPDZ [Keller20], Rmind, Jana relational database from Galois [Jana], etc. A very detailed list of 

several software solutions is available on the web of the TPMPC workshop [TPMPC]. 

Many of the above schemes have been used to implement important ML or FL tasks as the ones 

required for TRUMPET use cases [PRP+23]. Actually, there is also a rapidly growing list of works 

specifically designed to deal with training and prediction/classification phases. Some of the most 

recent are ABY [MR18], SecureNN [WGC18], Quotient [ASKG19], Gazelle [JVC18] and Delphi 

[MLSZP20]. 

 

3.1.3 Private Coded Distributed Computing 

Private Coded Distributed Computing (PCDC) is a set of techniques that belong to the coded 

distributed computing paradigm. This paradigm uses coding theory to efficiently inject redundancy 

to mitigate fundamental bottlenecks in large-scale distributed computing, while preserving the 

privacy of the inputs [UAGJTT21]. In general, the goal of these schemes is to compute a function 

over several distributed nodes, while keeping the input dataset private. To do this, nodes receive 

assigned coded versions of the inputs (shares) created using some encoding functions, and then, 

each node computes the goal function using its particular shares.  

One important feature of PCDC techniques is that, in general, they are very light in terms of 

computation, which makes them attractive for tasks as computationally expensive as the training of 

machine learning models. In these types of distributed schemes there exist fundamental trade-offs 

between privacy, computation cost, and communication cost. Consequently, some researching work 

in this field has focused on the reconstruction of the goal function when stragglers are present 

[LLPPR18, TLDK16, YLMA17]. The main goal of these works is to reduce the minimum number of 
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nodes that is required to carry out the computation of a function, which reduces the communication 

overhead associated with these techniques.  

One limitation of PCDC is related to the fact that computing complex functions over the coded domain 

might excessively increase the number of nodes needed to decode the result, to the point that it 

might be impossible to do it. Another relevant limitation is that the combination of these coding 

techniques with verification technologies, to ensure the correct execution of the protocol by the 

participants, becomes quite difficult. PCDC is an emerging field which has undergone some of its 

most significant advances very recently, which causes the absence of libraries oriented to the 

implementation of the most recent coding techniques. However, since the most relevant PCDC 

schemes to the field are often based on simple mathematical functions and protocol flows, their 

implementation does not pose a great technical challenge. 

 

3.1.4 Differential Privacy 

Originally designed to deal with the problem of privacy-preserving database analysis, Differential 

Privacy (DP) addresses the conflicting objective of protecting individual records while still allowing 

to learn useful information regarding the whole database [DR14]. Consequently, its goal is to quantify 

and bound the individual information which is leaked on the aggregated database by means of the 

use of different mechanisms. Informally speaking, DP guarantees that an adversary cannot find out 

more information regarding an individual than can be inferred from a database lacking the individual. 

One of its clear advantages when comparing to other privacy measures is that it presents strong 

privacy guarantees, even when there are multiple releases and an adversary has access to side 

information, hence avoiding linkage attacks. Data privacy through DP is based on the addition of 

noise using random variables through different mechanisms. The main parameter in these 

mechanisms is the privacy budget (ϵ). This parameter indicates the degree of noise added in the 

privatization: a small privacy budget value guarantees a greater privacy, but it entails a deterioration 

in the usefulness of the algorithm. This inconvenience causes having to find a value low enough to 

guarantee privacy while preserving its usefulness. Thus, numerous investigations have been 

performed to create techniques and tools with the aim of achieving said balance.  

Mechanisms are classified according to their probability of failure. If a mechanism guarantees the 

correct privatization offered by DP, that is, it has no probability of failure, it is an ϵ-DP mechanism. 

The most common one in this category is the Laplacian mechanism [DKMMN06]. On the contrary, 

if a mechanism has a probability of failure 𝛿, it is denominated as (ϵ, 𝛿)-DP mechanism. Within this 

category, it is possible to find the widely used Gaussian mechanism [DR14]. According to the party 

which applies the differential privacy mechanism, nowadays two important threat models can be 

considered [APB+23]: (1) each data owner applies DP mechanisms before collecting and 

aggregating the data (local DP), and (2) a trusted party collects all the records and then applies a 

DP mechanism, whose output is then released (curator DP).  

In view of the above-mentioned features, DP becomes a powerful method to guarantee the database 

privacy while still providing some utility. However, taking into account the Fundamental Law of 

Information Recovery, it still presents some drawbacks: the released database or result suffers a 

degradation on its accuracy depending on the number of queries that must be answered. In general, 
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the amount of leaked information and accuracy degradation depends on several factors such as the 

required level of privacy, the amount of data available, the number and type of queries, the threat 

model and the complexity of the data. As an example of the possible trade-offs, if we fix the privacy 

level, better accuracy results can be achieved with the curator DP model. However, this model goes 

with the need of a trusted party to apply the mechanism directly on the private data, which for many 

cases is a very strong assumption [DR14]. Consequently, more recent work does not consider 

anymore a trusted curator but uses secure multi-party computation to obtain the output without 

revealing intermediate results. On the other hand, the overhead on computational cost caused by 

DP mechanisms is usually not high, typically the smallest among all the privacy methods discussed 

in this proposal. As a warning note, DP mechanisms are hard to characterise because the 

information leaked is highly dependent on the type and frequency of the queries [APB+23]. 

Additionally, DP mechanisms are sensitive to software defaults, as for example the available 

arithmetic precision. 

There are several resources providing DP tools and exemplifying their use on more realistic 

scenarios. This includes the efforts of Apple Research on Differential Privacy for iOS and macOS 

keyboard statistics [AppleDP], Facebook Research on Differential Privacy providing a set of best 

practices to develop DP platforms and the release of a URL-shares dataset [KMRTZ20], Microsoft 

for obtaining usage statistics in Windows 10 [DKY17], the Google Differential Privacy Library 

[GoogleDP] and the Harvard Privacy Tools project [HarvardDP], to name just a few. Finally, a salient 

example coming from statistical agencies is the use of DP mechanisms to release the 2020 US 

Census Databases [Census22]. 

 

3.1.4.1 DP and Federated Learning 

DP mechanisms find immediate application on TRUMPET use cases. First, they provide efficient 

ways of computing private database statistics. Second, they can complement other suggested 

privacy methods by either avoiding that the trained FL models can be stolen during the 

prediction/classification phase, or by providing additional protection for the training datasets thanks 

to the effectiveness of DP against membership inference attacks [AC19]. In the ideal scenario, 

secure multi-party computation (or homomorphic encryption or other cryptographic technique) is 

used to make the computations to avoid leaking intermediate results, and a suitable form of statistical 

privacy (in worst case classic DP) is applied to the output to avoid that the result itself reveals 

sensitive information.  

From now on, we present different proposals which have managed to reduce the negative impact in 

accuracy of DP in FL, achieving a balance between privacy and the impact on the remaining utility 

of the data. The problem of finding a suitable privacy budget is approached from different fronts: (1) 

some works explore new properties of the mechanisms that allow different ways of accumulating the 

privacy budget in each iteration; (2) other works develop new mechanisms, aiming at an 

improvement compared to the usual Laplacian and Gaussian ones; finally (3) another option is to 

change where the mechanism is used in the FL algorithm. 
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3.1.4.2 Exploring new properties of mechanisms 

Wei et al. [WLDMYFJQP20] consider a Gaussian mechanism with two different variances: (1) one of 

them is used in the loss function of the weights that goes from the client (data owner) to the server 

(aggregator); (2) the other, for the aggregation function calculated at the server, is used in an 

algorithm they called Noise before model Aggregation FL (NbAFL). The presented approach argues 

that both functions (the loss and the aggregation) have different sensitivities, being the sensitivity of 

a function a measure of how much the output of the function can change when a single individual 

data point is changed. These variances are parametrized in terms of: the number of exposures (the 

number of times it is necessary to send the parameters) of each set of local parameters at the clients, 

an upper limit for the weights, the number of clients to add in the aggregation function, and the total 

number of customers. In addition, the study evaluates a modification in which only some clients are 

randomly chosen for the aggregation function. They calculate the loss function with several 

combinations of parameters and do a comparison with the algorithm without DP. By doing this they 

achieve better results with the method of selecting K clients and manage to achieve similar results 

to the case without DP using high privacy budgets. 

Another way of optimizing the privacy budget is presented in [Mironov17]. Using the Rényi 

divergence [Renyi61], Mironov [Mironov17] defines that a randomized mechanism is considered as 

(𝛼, ϵ)- Rényi Differential Privacy, or (𝛼, ϵ)-RDP, if it is applied to two neighbouring datasets (i.e., 

datasets that differ in only one entry) that do not diverge by more than ϵ for a given 𝛼 used in the 

divergence calculation formula. If a mechanism is (𝛼, ϵ)-RDP, it can be applied a new form of 

calculating the privacy budget that accumulates in each iteration of the FL algorithm, and that is 

better than the usual which consists in adding the privacy budget used at each iteration. Likewise, 

this method can be applied to transform an ϵ-DP mechanism into an (ϵ’, 𝛿)-DP mechanism.  

Dong et al. [DRS19] proposed f-DP as a different view to define DP. They start from the idea of a null 

hypothesis test which, for two neighbouring datasets, if a data point belongs to one of them, it verifies 

the null hypothesis; while if it belongs to the other one, it will verify the alternative hypothesis. The 

objective is to find a trade-off function that makes these two hypotheses indistinguishable, i.e., that 

confuses false positives with false negatives. In practice, it is difficult to find a function with these 

characteristics, which leads to define 𝜇-GDP, a type of DP based on a trade-off function between 

two normal distributions, one with mean 0 and another with mean 𝜇. So, if a mechanism is f-DP, a 

different procedure can be applied in each iteration to calculate the accumulation of the privacy 

budget.  

Another property of a mechanism is its privacy loss [DPgoogle22, DR16], which measures its 

effectiveness in generating outputs close to the outputs of neighbouring datasets. If the mechanism 

is ϵ-DP or (ϵ, 𝛿)-DP, the privacy loss will be upper-bounded by the privacy budget. Its study has 

facilitated the use of the so-called Advanced Composition Theorems, representing an improvement 

over the previously developed composition approach. In this case, the Privacy loss is seen as a 

random variable and its distribution is studied, referred to as the Privacy Loss Distribution (PLD).  

A similar idea to the previous one is to see the privacy budget as a random variable dependent on 

the mechanism. This is one of the premises for Moments Accountant (MA), introduced in Abadí et 

al. [ACGMMTZ16], that allows the use of a small portion of the privacy budget for each of the uses 

of the noise. The MA method is an alternative to the composition method for the total privacy budget 
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calculation and starts from the idea of calculating the moment bound of the random variable privacy 

budget. This moment bound is like a limit on growth of the moment. So, using the logarithm of the 

moment generating function of this random variable and its moment bound to study how much 

privacy budget must be used each time. However, one of the difficulties presented by the MA method 

is precisely to find the moment bound. For now, it is only found for the Gaussian mechanism. As a 

solution, Wang et al. [WBP19] propose years later an analytical calculation of the MA with which they 

obtain a tail bound that could be used for mechanisms that are (α, ϵ)-RDP. Their experiments show 

an improvement with respect to previous methods of calculating the privacy budget. 

 

3.1.4.3 Developing new mechanisms 

A different way to improve the accuracy is to develop new mechanisms tailored to the type of data 

or the algorithm they are using. Two examples of basic mechanisms are the Geometric and the 

Binomial:  

• Geometric mechanism: adds noise with discrete values, choosing them through an 

extended version of the geometric distribution, being able to give as result not only natural 

numbers but all integers [GRS09]. 

• Binomial mechanism: also adds noise with discrete values, but with a binomial distribution. 

This mechanism is (ϵ, 𝛿)-DP [MT07]. 

Other examples of used mechanisms are those developed by Zhao et al. [ZZYWWLNL21], who 

created an improved version of the ones introduced by Wang et al. [WXYZHSSY19]. These 

mechanisms are:  

• ThreeOptions: Taking as input a numeric vector with numbers from -1 to 1, returns a value 

C, 0 or -C for each of the values with a probability depending on the input value. According 

to the obtained results, this mechanism outperforms PM-SUB and PM-OUT when it comes 

to low privacy budget.  

• PM-SUB and PM-OPT: Given a list of numbers from -1 to 1, returns another list with numbers 

from -A to A, using uniform distributions over a range of values depending on the input. These 

two mechanisms differ in the way these ranges of values are obtained, being PM-SUB a 

suboptimal but simpler option than PM-OPT. These two mechanisms can be passed through 

another mechanism (Discretization Postprocessing) to obtain a discrete output, which is 

obtained with a Bernoulli distribution. According to the obtained results, PM-SUB works better 

than ThreeOptions when the privacy budget is high.  

• HM-PT: This is a combination of ThreeOptions and PM-SUB to take the advantages of both. 

This mechanism uses PM-SUB with a certain probability, otherwise use ThreeOptions. 

Authors compare ThreeOptions, PM-SUB and HM-PT mechanisms using the MSE metric 

with different datasets. They also use different methods: Linear regression, logistic 

regression and SVM, with various datasets. All three mechanisms achieve reasonably low 

MSE, but HM-PT slightly outperforms the others.  
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Agarwal et al. [AKL21] developed a new mechanism that uses the Skellam distribution, a discrete 

distribution that results from the subtraction of two Poisson distributions. They perform the privacy 

budget accumulation count in two different ways: one uses the properties of PLD while another uses 

(𝛼, ϵ)-RDP. Testing the accuracy and MSE, they conclude that the PLD method or using the 

properties of a (α, ϵ)-RDP mechanism give more efficient results than the previous methods for the 

Skellam mechanism, the Gaussian, and the discrete Gaussian. 

New mechanisms developed for Apple with Standford University in Bhowmick et al. [BDFKR18] are 

used in an algorithm that applies three mechanisms to strengthen privacy. One of the mechanisms 

is Gaussian applied in the aggregator. The other two, developed by the authors, are:  

• Privatized Unit Vector (PrivUnit): chooses a vector according to a combination of uniform 

distributions through an input vector.  

• Privatize the magnitude with absolute error (ScalarDP): using a scalar, the privacy parameter 

epsilon, an integer, and an upper bound, obtains a scalar through a combination of two 

uniform distributions. 

 

3.1.4.4 Changing where we apply the mechanisms 

As previously mentioned, another way to achieve a balance between privacy and utility of the 

algorithm is by selecting where the mechanism is applied. This procedure can be applied in several 

ways inside FL, since it can be modified to insert the noise in different parts.  

Bhowmick et al. [BDFKR18] combine PrivUnit and ScalarDP by firstly separating the vector of 

weights in direction and magnitude and then, applying respectively PrivUnit and ScalarDP. The 

combination of these two mechanisms results in a (ϵ1+ϵ2)-DP mechanism. In their results the 

accuracy decreases around 0.1 comparing to not using DP. 

Hu et al. [HGLPG20] find a new way to use the mechanism in the algorithm. Authors propose the 

convergence problem of the FL as an optimization problem to find a minimum required number of 

iterations. To solve this, the conjugate dual is used. This changes the original optimization primal 

problem into another one with different variables, called dual variables. In this case, the dual 

variables correspond to tuples of feature and label, the data with which the network is trained. That 

is, the primal problem goes from "Finding the weights that minimize the loss function" to the 

conjugate dual problem “Finding the training data that minimize the conjugate loss function”. Authors 

propose an algorithm that adds Gaussian noise twice in different steps: first in the dual variables, 

and subsequently after multiplying the previous result with the matrix of features to obtain the 

weights. Once the weights with noise are calculated for each client, they are sent to the aggregator 

using the MA. They compare the objective function of the primal problem, in which loss function has 

a strong influence, of the problem without privacy preserving methods and with this method.  

At last, other algorithms make use of a combination of different techniques. This is the case of 

NVIDIA in Li et al. [LLSY17], that combines the Sparse Vector Technique (SVT) with Selective 

Parameter Update. SVT [LSL17] consists in sending only some selected weights with noise, so it 

can guarantee privacy without consuming privacy budget at each iteration. Selective Parameter 
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Update [SS15] is a technique designed to reduce the impact of large weights on the overall 

computation, where only weights that are greater than a threshold are shared, but these weights are 

clipped to a pre-established value. The combination of these two techniques gives rise to an 

algorithm which compares the weights with a pre-established threshold. Each weight is only sent if, 

when added with parametrised noise using a privacy budget, is greater than a pre-established 

threshold to which noise parametrizes with a different privacy budget. That is, three noises with three 

different privacy budgets are used. Comparing the use of these protocols with different privacy 

budgets and with the ML model without using SVT, differences in accuracy of less than 0.05 are 

achieved for relatively small privacy budgets. 

 

3.1.4.5 Future perspectives 

This section has studied different mechanisms and tools to apply DP to FL settings but with a limited 

privacy budget. The analysed works provide good results in terms of accuracy, MSE or other ML 

metrics, but they are not fully tested to verify how well they protect against particular privacy attacks. 

These features are taken for granted by the DP promises [KMRTZ20] for any privacy budget, so it is 

not studied whether the used privacy budget is low enough to guarantee privacy in a practical 

scenario.  

For a first approach on the use of DP to protect FL settings in the TRUMPET project, SVT looks easy 

to implement and provides good results. In addition, the TRUMPET project will also explore the use 

of new combinations of mechanisms, such as the mechanisms developed in Bhowmick et al. (𝛼, ϵ)-

RDP, combined with MA to study if it allows to reduce the privacy budget. Other promising 

combinations include SVT with Gaussian mechanism or the combination of the Skellam mechanism 

with Analytic MA. 

 

3.2 Frameworks, tools and software for FL-tailored PETs 

The following table lists libraries and frameworks that implement PET methods and that could be 
used in TRUMPET. They are classified according to the privacy method they implement. 
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Table 2 – Libraries and frameworks implementing different PET methods. 

 

PETs libraries and frameworks 

Privacy method Library/framework Links 

Differential Privacy 

Google Differential Privacy 
Library 

https://github.com/google/differential-privacy 

OpenDP 
https://projects.iq.harvard.edu/opendp 

https://github.com/opendifferentialprivacy/ 

  cuHE https://github.com/vernamlab/cuHE 

Homomorphic Encryption 

SEAL https://github.com/microsoft/SEAL 

HEAAN https://github.com/snucrypto/HEAAN 

HElib https://github.com/shaih/HElib 

NFLlib https://github.com/CryptoExperts/FV-NFLlib 

PALISADE https://palisade-crypto.org/ 

Lattigo https://github.com/ldsec/lattigo 

TFHE https://tfhe.github.io/tfhe/ 

FHEW https://github.com/lducas/FHEW 

HE Transformer https://github.com/IntelAI/he-transformer 

  Concrete https://github.com/zama-ai/concrete 

  OpenFHE 
https://github.com/openfheorg/openfhe-
development 

  TFHE-RS https://github.com/zama-ai/tfhe-rs 

Secure Multiparty Computation 

Libscapi https://github.com/cryptobiu/libscapi 

SCALE-MAMBA https://homes.esat.kuleuven.be/~nsmart/SCALE/ 
Additional software and 
framework resources (e.g., 
ABY, ABY3, FRESO, 
CrypTen, Tf-encrypted) 

https://github.com/rdragos/awesome-mpc 

Private Coded Distributed 
Computing 

Galois https://github.com/GuildOfWeavers/galois 

Zero Knowledge Proof 

libsnark https://github.com/scipr-lab/libsnark 

gnark https://github.com/ConsenSys/gnark 

Bulletproofs 
https://github.com/dalek-
cryptography/bulletproofs 

https://github.com/google/differential-privacy
https://projects.iq.harvard.edu/opendp
https://github.com/opendifferentialprivacy/
https://github.com/vernamlab/cuHE
https://github.com/microsoft/SEAL
https://github.com/snucrypto/HEAAN
https://github.com/shaih/HElib
https://github.com/CryptoExperts/FV-NFLlib
https://palisade-crypto.org/
https://github.com/ldsec/lattigo
https://tfhe.github.io/tfhe/
https://github.com/lducas/FHEW
https://github.com/IntelAI/he-transformer
https://github.com/zama-ai/concrete
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://github.com/zama-ai/tfhe-rs
https://github.com/cryptobiu/libscapi
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/rdragos/awesome-mpc
https://github.com/GuildOfWeavers/galois
https://github.com/scipr-lab/libsnark
https://github.com/ConsenSys/gnark
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs
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4 A combination of PET methods for AFL 

The techniques presented in the previous section cannot simultaneously protect against all the 
privacy leaks and attacks that can be present in an FL setting. Some are better for protecting the 
input privacy and/or the output privacy, and others for protecting the training data privacy or the 
model privacy. Furthermore, some of them entail a potential loss of utility. So, we must combine 
them to get a higher protection regarding privacy leaks. 

In general, we can distinguish three main categories of PET strategies: 

• Encryption-based computation: these techniques typically aim at computing an output 
without any party obtaining more information than the output itself, e.g., secret sharing, 
homomorphic encryption, garbled circuits, etc. 

• Statistical privacy: in some cases, even only revealing the final output of an algorithm may 
leak sensitive information. Therefore, statistical privacy techniques aim at perturbing the 
output, obtaining an approximate output while hiding sensitive information. Such techniques 
include differential privacy, pufferfish privacy, some of the new privacy metrics being 
developed in TRUMPET’s WP3, etc. 

• Verification strategies:  these strategies aim at verifying that all parties perform their work 
correctly, ideally without revealing any additional information but the outcome of the 
verification. Such strategies often employ zero knowledge proofs, sometimes with the help 
of specific properties of the encrypted computation techniques, e.g., additive homomorphic 
encryptions implicitly already allow to verify correct addition without revealing the numbers 
being added. 

The choice of techniques in these three categories is often largely independent, i.e., one can select 
an encrypted computation strategy, a statistical privacy technique and a verification strategy to build 
an algorithm, and most combinations are possible even if in some cases some of them offer some 
additional advantages. Below, we do not describe all possible combinations of these three categories 
but focus on some combinations and techniques of particular interest. 

 

4.1 Encrypted Computation: SMPC with HE 

4.1.1 SMPC vs HE 

The main difference between HE and SMPC regarding efficiency relies on the fact that HE requires 
less interaction but higher computational cost, and for SMPC, the computational cost is much lower, 
but communication becomes the main bottleneck. Consequently, an interesting path to follow is the 
combination of both strategies to trade off communication for computation, and vice versa, 
depending on the available network and computation resources [LJLA17]. A clear example of this 
idea is the use of Multi-Key Homomorphic Encryption (MKHE) which allows to reduce the costs of 
bootstrapping in HE by means of interactions among parties [MTP20, AHSL22]. There are already 
some works exemplifying its use for training machine learning models [FTPSSBH20]. 
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4.1.2 Homomorphic Encryption with Multiple Keys 

Most existing HE-based solutions for secure computation work under a single-key approach in 

which ciphertexts are encrypted under the same key. However, this approach is clearly impractical 

for general multi-party computation with more than two parties. Note that, ideally, independent 2-

party computation tasks must be performed between every pair of parties (see an example for the 

distributed model of computation with HE explained in Figure 2.(b) of [AHSL22]). 

On the contrary, remember that TRUMPET [PRP+23] focuses on a particular computation model 

given by FL, in which multiple data owners delegate sensitive data (model updates) to the 
aggregator to train a collaborative global model. Consequently, while it is true that HE allows us to 
make general computations over encrypted data, its use must be adapted to the specific needs of 
FL. Still, many of the current HE-based solutions for secure aggregation work under this single-key 
approach, where the ciphertexts provided by all data owners are encrypted under the same key. 
This introduces a relevant drawback in FL which consists in the possibility of a collusion between 
the cloud and some of the data owners [PPV22, PPV22HE]. If the aggregator sends the ciphertexts 

received from one data owner to another one, who also owns the secret key, all inputs provided by 
the former could be decrypted by the latter (see Figure 3).  

 

 

Figure 3 – Secure aggregation by means of Single-Key HE. 
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To ensure data privacy in a more practical way, the aggregator should be able to realize secure 
aggregations on model updates which have been encrypted using different keys for each data owner. 
Schemes that allow homomorphic evaluation on data encrypted under different keys are known as 
multi-key HE schemes (see Figure 4). 

 

 

Figure 4 – Secure aggregation by means of Multi-Key HE. 
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With a HE whose ciphertexts are encrypted under different keys or their combination, the aggregator 
could perfectly compute the required aggregation function and return the aggregated models to the 
final user. Now, by means of a collaborative protocol, parties could re-encrypt the output under the 
final user’s key, or directly decrypt it. As input ciphertexts are not encrypted under the secret 
key of the final user, the risk of a collusion with the cloud is removed. 

Next, we briefly detail the existing possibilities to have several keys and HE at the same time. With 
this aim, the “ideal” concept of a multi-key HE is divided into the two main families: Threshold HE 
and Multi-Key HE. 

• Threshold HE: This type of scheme requires a setup phase involving the joint participation 
of all the parties for the key generation process. In general, each party generates his/her own 
secret key and public key and, afterwards, all of them gather their keys to generate a 
collective public key. 

• Multi-Key HE: In contrast to Threshold HE, the setup phase of a multi-key HE scheme does 
not require the joint collaboration of all the parties. Each user can independently generate its 
own secret and public keys, afterwards ciphertexts under different public keys can be 
evaluated “on-the-fly”. This results in an output ciphertext, whose decryption will depend on 
the secret keys of all the input ciphertexts used in the circuit evaluation. 

It is worth noting that Threshold and multi-key variants present different advantages and 
shortcomings depending on the desired key setup complexity, evaluation efficiency, or system 
scalability, to name just a few practical performance indicators. Actually, in practice, hybrid systems 
can be designed which combine the best features of threshold and multi-key HE schemes. A general 
review of the problem of managing several keys can be found in [TCLRLB16], but only for data sharing. 

A review of the case for several keys in combination with HE, currently can be found in the works 
[Bongenaar16, AH19, AHSL22]. 

 

4.1.3 Threshold Homomorphic Encryption (ThHE) 

Supporting secure and privacy-preserving computations on inputs provided by different data owners 

requires data to be encrypted under multiple keys. The first method which we can consider defining 

several keys is to make use of threshold encryption [DF89] techniques. With these mechanisms, the 

parties must generate the collective key during the setup phase and before any computation. 

Note that revoking and changing such a joint key can also be done, but it is required that the setup 

phase is run again, and afterwards re-encrypt the data under the new joint key. 

In a threshold encryption scheme the parties can independently encrypt their data under a joint key 
but must still cooperate for decryption, which is done by means of a distributed decryption protocol.  
Shamir’s secret sharing [Shamir79] is the basis for a threshold structure (T, N), which allows to define 

N shares of a global secret key to be distributed as individual secret keys among the different parties. 
The idea is that only T parties are required to collaborate for decryption [DHMR07]. 

The choice of the threshold value T allows us to securely deal with two adversary models: 

• T ≥ N/2 corresponds to the case of dishonest majority, when more than half of the users 
may be corrupted. 
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• T < N/2 corresponds to the case of honest majority, when less than half of the users may 
be corrupted. 

The threshold variant of a HE scheme combines the properties of threshold decryption together with 
homomorphic computations. Formally, we can define a ThHE scheme as the tuple of algorithms 
ThHE = (Setup, KeyGen, JointKeyGen, Enc, Eval, PartDec, Combine): 

• ThHE.Setup(1^lambda) → pp. 

• ThHE.KeyGen(pp) → (pk, sk). Each party calls this primitive to generate (pki, ski) 

• ThHE.JointKeyGen(pk1, pk2, …, pkN) → pk*, ek*. (Interactive protocol) 

• ThHE.Enc(pk*, m) → c. 

• ThHE.Eval(pk*, f, c, c’) → ceval. 

• ThHE.PartDec(ski, c) → рi. (Interactive protocol) 

• ThHE.Combine(р1, р2, …, рN) → m. (Interactive protocol) 
 

4.1.3.1 Joint Key generation 

Some works in the literature assume that the collective public and secret keys are generated by a 
trusted dealer, removing the JointKeyGen protocol [DF89, CGS97]. Alternatively, the collective public 

key is also generated in other works by the ThHE.JointKeyGen protocol, having as inputs the 
different individual parties’ keys [RSTVW22]. 

 

4.1.3.2 Distributed decryption 

With respect to the distributed decryption phase, we can use ThHE.PartDec followed by 
ThHE.Combine protocols, or in other works such as [MTBH21] the use of a collaborative switching 

key protocol is proposed. Hence, there exist other methods that avoid the use of a distributed 
decryption by re-encrypting the ciphertext under the key of the final receiver. In Table 3, the 
reader can consult different threshold HE constructions.  

Next, we elaborate more on the peculiarities of Threshold HE schemes depending on the underlying 
threshold structure. 

• (N, N)-threshold HE: For this particular access structure, many works try to exploit an 
additive homomorphism in the keyspace which is present in many encryption schemes. 
Consequently, we search that all shared secret keys ski satisfy the relation: 

sk = Σi ski, for collective public and secret keys pk and sk. 

As we have seen, once the key setup is done, the rest of evaluation primitives work as in the case 
of a single-key HE scheme. However, decryption is impossible if one of the parties does not 
collaborate, which can constitute a point of failure at the time of decryption. 

• (T, N)-threshold HE: For T < N, this type of threshold HE scheme appears as a more flexible 
construction than (N, N) - ThHE, in which we can decrypt even if some of the users are not 
present for decryption.  
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As an example, in [DF89] the authors propose a general (T, N) threshold version of ElGamal, but it 

requires a trusted dealer to output the joint public key and the different shared individual keys. 
Afterwards, [Pedersen91] removed the need of a trusted dealer and introduced an additional 

validation step in the secret shares for robustness. Even so, all these protocols made use of a trusted 
authority for decryption. Subsequent works removed this last assumption by relying on Diffie-
Hellman key generation [DH76]. 

A common aspect of these approaches is that they are based on the use of Shamir’s Linear Secret 
Sharing [Shamir79] to generate secret key shares for the N parties. The idea is to define sk* = s* 
as the constant term of a polynomial f(x), that is, f(0) = s*. The polynomial f(x) has degree T - 1, and 
hence, T points are required to reconstruct f(x) and recover s* by means of Lagrange interpolation. 
Finally, each ski is defined as ski = f(i), for i = 1, …, N. 

Regarding lattice-based HE, [BGGJKR18] proposed the first (T, N)-threshold HE scheme based on 

LWE. Similarly to previous works, shared keys are defined by means of Shamir’s Secret Sharing. 
Additionally, in [BGGJKR18] a universal thresholdizer was proposed. This method allows extending 

any general single-key HE scheme into a (T, N)-threshold one. A more detailed list of threshold HE 
schemes can be found in Table 3. 

As we have seen, both (N, N) - and (T, N) - threshold HE schemes require the participation of all the 
parties during the “joint key setup.” One clear advantage relies on the fact that the size of the joint 
public key is usually independent of the number of parties. On the other hand, if the joint key must 
be revoked because users are frequently joining or leaving the system, the whole threshold key 
setup must be run again and again. If the number of users changes often, we will see next that Multi-
Key HE schemes are a more suitable option allowing one to work with multiple keys “on-the-fly”, 
hence avoiding running again the key setup only because a joint key is revoked. 

 

Table 3 – Several Threshold HE schemes (see [AHSL22]) 

 

THRESHOLD HE      

Scheme 
Hard 

problem 
HE scheme HE type CRS 

Slot 
packing? 

Threshold 
(t,n) for 

general t? 
Threshold 
ElGamal 

[DF89, 

Pedersen91] 
 

Discrete 
logarithm 

 
ElGamal Partial No No Yes 

Threshold 
Paillier [CDN01] 

Composite 

residuosity 
Paillier Partial No No No 

[AJLTVW12] LWE BGV Fully No Yes No 

[BGGJKR18] LWE GSW Fully Yes Yes Yes 

[MTBH21] RLWE BFV/BGV/CKKS Fully Yes Yes No 

[MBH22] RLWE BFV/BGV/CKKS Fully Yes Yes Yes 
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4.1.4 Multi-Key Homomorphic Encryption (MkHE) 

A general description of an “on-the-fly” Multi-Key Homomorphic Encryption (MKHE) scheme: 

[LTV12] is the first work to describe an MKHE encryption scheme able to support homomorphic 

operations between ciphertexts encrypted under different combinations of secret keys. 

Ciphertexts can be encrypted either alone or also under a different combination of individual users’ 

keys (pk1, …, pkN). The main difference between ThHE and MKHE relies on the fact that the latter 

does not require a joint key setup phase among all the participants. For example, now a ciphertext 

encrypted under pk1 could be perfectly operated with a ciphertext encrypted under pk2 and pk3. 

However, MKHE still requires a distributed decryption protocol to finally recover the encrypted 

results. Following the example, the final ciphertext is encrypted under (pk1, pk2, pk3), so the 1-st, 2-

nd and 3-rd parties should collaborate during decryption. 

General MKHE primitives. We can define a MKHE scheme as the tuple of algorithms MKHE = 
(Setup, KeyGen, Enc, Extend, EvalKeyGen, Eval, Dec): 

• MKHE.Setup(1^lambda, 1^kappa) → pp. Where kappa is a bound on the maximum number 
of different keys allowed. 

• MKHE.KeyGen(pp) → (pk, sk). Each party calls this primitive to generate (pki, ski). 

• MKHE.Enc(pk, m) → c. Given a public key pk and message m, the algorithm outputs a 
ciphertext encrypted under public key pk. 

• MKHE.Extend({pk1, …, pkK}, c) → cext. Given a set of K public keys with K ≤ kappa, and a 
ciphertext c, the algorithm outputs the extended ciphertext cext under public keys {pk1, …, 
pkK}. 

• MKHE.EvalKeyGen(pkcomb) → ekcomb. Given a combined public key pkcomb, the output is the 
extended evaluation key. 

• MKHE.Eval(pkcomb, f, cext, c’ext) → ceval. Given two ciphertexts extended under the same 
“combined public key” pkcomb, outputs the evaluated ciphertext ceval. 

• MKHE.Dec((sk1, …, skK), cext) → m. Given all the secret keys under which cext is encrypted, 
the algorithm outputs its decryption. 

At the same time, we can distinguish two different subcategories of Multi-key HE: 

 

4.1.4.1 Single-hop HE 

The main feature which characterizes this category of MKHE schemes is that the primitive 
MKHE.Extend can only be applied once. So, if a ciphertext is the result of a homomorphic 
computation, no further extensions to additional keys can be done. The first single-hop variant was 
presented in [CM15], where a compiler for multi-identity homomorphic IBE (Identity Based 

Encryption) was introduced. The compiler, based on the GSW scheme [GSW13] (see Table 5), allows 

the creation of ciphertexts encrypted under different identities, hence extending the “single-identity” 
of GSW to multiple identities. The link between this new GSW-based scheme and MKHE relies on 
the fact that the concept of identities used in this work can be equivalently seen as the use of 
different keys in the same ciphertext. 

Additionally, and contrary to ThHE, in the literature of MKHE schemes (e.g., [LTV12, CM15]) many 

works consider that the decryption primitive MKHE.Dec has access to all the secret keys {sk1, …, 
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skK}, hence assuming the presence of a trusted party who holds all the required secret keys and 
performs decryption. Another limitation from [CM15] is that the number of possible keys is bounded 

by K. The work [MW16] fixes the last two shortcomings, in such a way that their improved multi-

identity GSW-based scheme (1) does not limit the maximum number of keys a ciphertext can be 
extended to, and (2) a two-round SMPC-protocol is introduced for collaborative decryption (similarly 
to the partial decryption and combine primitives used in ThHE). 

 

4.1.4.2 Multi-hop HE and other properties 

Multi-hop MKHE removes the limitation of single-hop schemes in the number of times we can 
use the Extend primitive. Several redesigns have been proposed on top of all the main families 
of lattice-based HE used as the baseline scheme. Some relevant examples include multi-hop 
MKHE variants of GSW [PS16, BP16], BGV [LTV12, CZW17, LZYHLT19], TFHE [CCS19] and both BFV 

and CKKS schemes [CDKS19]. See more examples in Table 4. 

In addition to moving from single-hop to multi-hop, and following the initial work [LTV12], there are 

several approaches to build MKHE schemes holding more specific properties. Some works improved 
the expansion in ciphertext size of [LTV12] from quadratic to linear [BP16, CZW17, YKHK18, LZYHLT19, 

CDKS19]. Some particular schemes do not require CRS in the key generation phase [LTV12, DHRW16]. 

Lastly it is highlighted that Multi-Key extensions of RLWE-based schemes [CZW17, YKHK18, CDKS19, 

AH19] preserve the capacity of working with SIMD (Single-Instruction, Multiple-Data) encrypted 

operations thanks to slot packing. 

Table 4 includes a comparison summary for the main features of MKHE schemes. 
 

Table 4 – Several Multi-Key schemes (see [AHSL22]) 

 

MULTI-KEY HE        

Scheme 
Hard 

problem 

Ciphertext 

size grows 

Protocol 

rounds 

Multi-

hop 

# keys is 

bounded? 
CRS 

Slot 
packing 

Uses 
bootstrapping? 

[LTV12] 

 

NTRU 

 
Quadratic - Yes Yes No No No 

[CM15] LWE Quadratic - No No Yes No No 

[MW16] LWE Quadratic 2 No No Yes No No 

[PS16] LWE Quadratic 2 Yes Yes Yes No No 

[BP16] LWE Linear 2 Yes No Yes No Yes 

[DHRW16] piO Quadratic 2 Yes No No No Yes 

[CZW17] RLWE Linear 2 Yes Yes Yes Yes No 

[YKHK18] RLWE Linear 2 Yes Yes Yes Yes No 

[LZYHLT19] RLWE Linear 2 Yes Yes Yes Yes No 

[CDKS19] RLWE Linear 2 Yes Yes Yes Yes No 
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[AH19] RLWE Constant 4 Yes Yes Yes Yes No 

[CCS19] TLWE Linear 2 Yes Yes Yes No Yes 

 

 

Table 5 – Base Single-Key HE used in each MKHE scheme (see [AHSL22]) 

 

MULTI-KEY HE 

Scheme Base Single-Key HE scheme which is extended? 

[LTV12] 

 

NTRU 
 

[CM15] GSW 

[MW16] GSW 

[PS16] GSW 

[BP16] GSW 

[DHRW16] GSW 

[CZW17] BGV, ring-GSW 

[YKHK18] BGV, ring-GSW 

[LZYHLT19] BGV, ring-GSW 

[CDKS19] BGV, CKKS 

[AH19] BFV, ring-GSW 

[CCS19] TFHE 

 

 

4.1.4.3 Comparison between ThHE and MkHE 

Once we have revisited the most prominent constructions for both ThHE and MKHE, next we 
summarize their strong and weak points. 

 

Threshold HE: 

• Flexible access structures for distributed decryption, either dishonest or honest majority. ✅ 

• Homomorphic computation with encrypted data presents almost no changes and reduced 

overhead compared to the corresponding baseline single-key HE. ✅ 

• The setup phase requires a collaborative protocol between all the involved parties. 🚫 

• Every time the joint key must be revoked, data re-encryption and a new setup phase must 

be run. 🚫 



 
 

 

 
45 

 

Multi-Key HE: 

• Each user can encrypt his/her data with their own secret key. ✅ 

• The setup phase does not require a collaborative protocol to generate a joint key. ✅ 

• Homomorphic computation with encrypted data presents significant changes and overhead 

compared to the corresponding baseline single-key HE. 🚫 

• If a group of parties remains the same over time, there is an overhead in ciphertext extension 

proportional to the number of parties of the group. 🚫 

 

4.1.5 Beyond the state of the art: Tailored MkHE for Average Aggregation 

Several works have used single-key HE [PBCSSZ23-HES, MSMGGS21, GSSG22] and even multi-key HE 

[MTBH21, SPTFBSP21, DCESBPTBH23] as a main building block inside the pipeline of FL. However, a 

common trait of most of these HE schemes is that they are initially designed to homomorphically 
evaluate very complex functions which are approximated with high-degree polynomials. Contrarily, 
in many FL scenarios the considered aggregation functions are usually not as complex, and there is 
still room for improvement when the homomorphic computation does not have a high multiplicative 
depth. Following this line of research, it has been shown that it is possible to optimize the use of 
multi-key HE for the setting of secure average aggregation [PBCSSZ23]. 

In particular, [PBCSSZ23, PBCSSZ23-HES] propose a lattice-based MKHE scheme especially designed 

for the average aggregation primitive.  Particularizing TrHE and MKHE schemes, we can define a 
MKAggHE scheme with multiple keys tailored for secure aggregation as the tuple of algorithms 
MKAggHE = (Setup, KeyGen, Enc, Agg, PartDec, Combine): 

• MKAggHE.Setup(1^lambda) → pp, {share1, …, shareL}. (Interactive protocol) 

• MKAggHE.KeyGen(pp) → (sk). Each party calls this primitive to generate ski. 

• MKAggHE.Enc(sk, share, m, T) → c. Given a secret key sk, a share share and message m 
to be encrypted in round T, the algorithm outputs a ciphertext encrypted under secret key sk. 

• MKAggHE.Agg(c1, …, cL) → cagg. Given a set of N ciphertexts encrypted for round T, the 
algorithm outputs the aggregated ciphertext cagg of round T under secret keys {sk1, …, skL}. 

• MKAggHE.PartDec(ski, c) → рi. The aggregated ciphertext c of round T can be partially 

decrypted with key ski. 
• MKAggHE.Combine(р1, р2, …, рL) → m. (Interactive protocol) The partial decryptions must 

be combined to obtain the aggregated result of round T. 

In Table 6 we include a high-level comparison between a baseline solution for additive secret 
sharing, non-optimized single-key and threshold HE, and the recent optimized secret-key variant, 
which also makes use of additive secret sharing during the setup phase as a building block. 
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Table 6 – Comparison of several methods for secure aggregation (see [PBCSSZ23] for details) 

 

SECURE AGGREGATION   

Protection Method 
N Agg. rounds 
L Data Owners 

 

Communication cost Relevant properties 
Size of the Protected 

Inputs 

Additive secret sharing 
(Baseline example from 

[PBCSSZ23]) 
 

O(N ⋅ L2) 

• A new set of shares 
must be generated 
per each agg. round. 

• Avoids collusion with 
the aggregator 

• Same as the 
plaintext space 

Public-Key HE (single-
key) 

O(N ⋅ L) 

• Risk of collusion 
between the 
aggregator and secret 
key owner 

• Public-key 
ciphertexts 

Threshold HE (L-out-of-L) O(N ⋅ L) 

• Avoids collusion with 
the aggregator 

• Need of generating a 
collective public key 

• Public-key 
ciphertexts 

Tailored Multi-key 
[PBCSSZ23] 

O(N ⋅ L) 

• Avoids collusion with 
the aggregator 

• Light setup phase to 
generate a set of 
additive shares which 
can be reused in 
consecutive agg. 
rounds. 

• Secret-key 
ciphertexts 

• If RLWE, half the 
size of public-
key ciphertexts. 

• If LWE, removes 
a quadratic 
factor. 

 

 

Compared to the non-optimized use of HE for average aggregation, MKAggHE [PBCSSZ23] reduces 

the communication cost per party by a half if based on RLWE, and from quadratic to linear if based 
on the LWE problem (see Table 6). This benefit of working with secret-key ciphertexts comes from 
the fact that during the same aggregation round T, the component “a'' from RLWE or LWE samples 
is also the same for all submitted ciphertexts. Therefore, this term can be locally precomputed by all 
Data Owners, so avoiding sending it to the aggregator. 

This optimization exploits the same additive homomorphism in the keyspace which is present in 
threshold HE. Consequently, the final aggregated ciphertext is encrypted under a collective secret 
key sk with the form: 

sk = Σi λi ⋅ ski,  

being the λi, the weights associated with the computed aggregation rule. 

We remind the reader that, while this type of solution can be very efficient for the average 
aggregation rule, many of these improvements cannot be applied for more complex aggregation 
functions. For this last scenario, the use of the already mentioned more conventional multi-key HE 
schemes is still needed. 
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4.2 Encrypted Computation: SMPC with PCDC 

4.2.1 Secret Sharing as a building block 

Secret sharing is a technique where n parties each get a part (a share) of a set, such that to 
reconstruct the secret at least a certain number t of these parties are needed, and no information 
can be obtained by combining only t-1 shares.  Popular secret sharing schemes are additive secret 
sharing [DFKNT06] and Shamir’s secret sharing [Shamir79]. An important advantage of such 
schemes is that no trusted party is needed, and the system remains secure even when t-1 parties 
collude.  A disadvantage is that in general secret sharing has a higher cost because all parties need 
to participate and communicate during the execution of several operations, often leading to a cost of 
O(n2). Even so, specific operations such as additions and inner products can be performed much 
more efficiently. Several libraries exist which implement secret sharing in a reliable way [TPMPC]. 

 

4.2.2 Private CDC 

The original scheme that provides information-theoretically security is the well-known BGW protocol. 
It is based on Shamir’s Secret Sharing scheme where a master node creates N coded shares T-
secure which are subsequently sent to the workers. There are multiple variants of coded schemes 
based on Secret Sharing, like leveraging the use of staircase codes [BPR20], using entangled 

polynomial codes [NNM18] to allow alternative types of input partitions, using polynomial codes 

[NM21] to massive matrix multiplication, and utilizing GCSA codes [CJWJ21] with noise alignment for 

batch matrix multiplication. 

Secret sharing schemes based on Lagrange polynomial codes, often called polynomial sharing, are 
very interesting since it leverages the Lagrange interpolation rule to provide T-secure information-
theoretic privacy to the input data in both nodes and central server. One remarkable alternative to 
the previous approach, which also leverages Lagrange polynomials, is Lagrange Coded Computing 
(LCC), which has been proposed as a unified solution for computing general multivariate 
polynomials. In comparison to the previously mentioned schemes, LCC reduces the amount of 
storage, communication and randomness overhead. 

There are other relevant works on the field, like a proposal of an optimal linear code for private 
gradient computation using harmonic sequences [YA19], or another that makes use of cross-

subspace alignment (CSA) codes [KL19] to propose a private secure coded computation scheme. 

Some of these works have already been applied to Federated Learning scenarios. For example, 
CodedPrivateML [SGA21a], that uses LCC to provide information-theoretic privacy guarantees for 

both the training dataset and model updates, it enables fast training by distributing the computation 
load effectively, and it secretly shares the dataset and model parameters using coding techniques. 
LCC has also been leveraged to break a fundamental quadratic barrier for secure model aggregation 
in Federated Learning [SGA21b]. Coded Federated Learning (CFL) [PDAAH20] has been proposed to 

mitigate the impact of stragglers (i.e., users who do not provide timely updates) in Federated 
Learning, and CodedFedL [PDAYTAH21] enables non-linear federated learning by efficiently exploiting 

distributed kernel embedding. CSA codes [JJ22] are also considered to address the problem of X-

secure T-private federated learning submodel learning. 

Some of the most interesting coding techniques to be applied on Federated Learning for providing 
input privacy are the previously mentioned polynomial sharing configurations, as they are an 
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extension of secret sharing that can be improved to compute complex functions with a low 
computational cost. They are usually based on Lagrange interpolation, but this technique has some 
limitations when used in ML scenarios: 

• The recovery threshold depends on the degree of the polynomial computed. This means that 
operations that increase the polynomial degree, like the multiplication of matrices (it doubles 
the polynomial degree), increase the recovery threshold required to decode the result. 

• It does not allow to compute non-linear functions. 

• It relies on quantizing the input data into the finite field, which severely affect the precision of 
the model. 

• It becomes numerically unstable when the number of nodes of the network is too big, or if 
the input data are rational numbers. 

 

4.2.3 Beyond the State of the Art 

For these reasons, we have worked on an alternative coding technique to create a secret sharing 
configuration that overcomes the limitations of Lagrange interpolation. Our proposal is based on 
Berrut Approximated Coded Computing (BACC) [JM23], which is a coding scheme that allows to 

approximate non-linear functions with a bounded error, and it is numerically stable. The main 
downside of the original scheme is that it does not natively provide any form of input privacy.  

The main goal of Berrut original scheme is to evaluate an arbitrary function f: V → U over some input 
data X = (X0, …, XK-1), maintaining the numerically stability with a bounded error, where U and V are 
sets of real matrices. This scheme works for a decentralized computing configuration with one 
master node, owner of the data, and N worker nodes, in charge of computing the goal function. 

To perform the encoding step over the input data, the next rational function is composed by the 
master node: 

 

for some distinct values α0, …, αK-1∈ℝ. In the original scheme it is suggested to choose these values 

as Chebyshev points of first kind [Xu16], so αj = cos((2j + 1)π/2K).  

This can also be written as u(z) = Σi Wi Xi = W • X with W = (W0, …, WK-1) and being 

. 

The master node assigns u(zj) to node j, so that this node calculates the goal function f over u(zj), 
and retrieves the result f(u(zj)) to the master node. In the original BACC scheme, it is suggested to 
choose zj as Chebyshev points of second kind, so zj = cos(jπ/(N-1)). 
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When the master node has a subset of results f(u(z̃j)) obtained from the n faster nodes denoted as 
F, it approximately calculates f(Xj) interpolating the value of the function in the point: 

. 

Our work has consisted in introducing random elements into the encoding step, so the input data 
remains private while the master node is still able to decode the result. To achieve this, we have 
altered the rational function u(z) used to encode the data, so it introduces some random input R in 
the composition, therefore u’(z) = W’ • X + V • R, being W’ and V the coefficients used to encode the 
input X and the randomness R respectively. Both W’ and V are constructed using some specific set 
of points α’0, …, α’K-1∈ℝ that guarantees that u(α’0) = X0, as this is a required condition for the 
interpolation to be feasible. 

The privacy guarantees of our scheme have been measured using the notion of mutual information, 
calculated as the capacity of a MIMO channel. The results of this privacy analysis have shown that 
not only is the input privacy reasonable for individual shares, but also that mutual information scales 
logarithmically with the number of colluding nodes. So, increasing the number of colluding parties 
does not directly imply that new information is inferred from the input. As a result of this work, we 
have proposed a new scheme that provides a reasonable level of privacy while keeping similar levels 
of precision compared to original BACC when the number of parties’ results used for decoding is 
close to the total. 

The original and the proposed schemes are designed to be used with a unique input owned by some 
master node that runs the protocol, which implies that in order to make this scheme suitable for 
Federated Learning, an extension is needed. Therefore, we have proposed a Secure Multi-Party 
Computation (SMPC) protocol, similar to polynomial sharing, that leverages our encoding technique 
to distributively compute a function between different nodes, each having its own private dataset. 
The protocol is defined with the following phases: 

• Sharing: Each worker node composes u’(z) to encode their own input data X(j), it evaluates 
the function using Chebyshev points of second kind and exchanges each evaluation (share) 
with a different node that participates in the protocol. 

• Computation and Communication: Each worker node evaluates the goal function f over all 
the shares received by the rest of the nodes and sends this partial result to the master node 
in charge of decoding the final result. 

• Decoding: The master node decodes the final result f(X(0), …, X(n-1)) using the interpolation 
function rB. 

 

4.3 Statistical Privacy: SMPC with DP 

One of the main problems on the use of central DP is that we must trust the aggregator. Pentyala et 

al. [PRMDMNC22] propose the use of Secure Multi-Party Computation (SMPC) in combination with 

DP to address this issue. The combination of SMPC with DP offers other benefits, such as the 

optimization of the use of the privacy budget by each of the computing parties [KOV15] and each 
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party only needs to know its own desired level of privacy, its own function to be computed, and its 

measure of accuracy. 

In a similar way, Böhler and Kerschbaum [BK20] explore the optimization of the computational time 

for the exponential mechanism, as well as the reduction of the privacy budget. This is done by 

recursively splitting the data universe into subranges, thereby achieving sublinear running time in 

the size of the data universe. They focus on utility functions which allow efficient computation of 

selection probabilities. Specifically, they study the decomposition of the mean function.   

At last, Truex et al. [TBASLZZ19] combines DP with SMPC and Homomorphic Encryption in a 

federated learning setting. When the aggregator requests the data, performs k requests, and each 

request is distributed to all parties through a secure channel. Each party adds Gaussian noise to the 

information required, with a privacy budget assigned by the aggregator. Moreover, a homomorphic 

encryption algorithm is included in this schema, where each client/party has a different secret key. 

The authors perform a study with different AI algorithms in a federated learning setting, including 

SVMs, Decision Trees and CNNs, adapting them to the requirements of a SMPC system. Thanks to 

the reduction of the amount of noise used in homomorphic encryption, better accuracy is achieved 

than simple DP protocols in FL. 

 

4.3.1 Baseline combinations 

In general, the baseline combination of SMPC with DP provides, in terms of privacy, similar results 
to combining HE with DP, although it usually requires considering an additional non-colluding 
assumption. With respect to efficiency, SMPC provides solutions with less computational cost, but 
with a much higher number of communication rounds. Regarding leakages on both the training data 
and the final model, SMPC suffers from the same issues as HE, and consequently DP can help to 
mitigate them. 

 

4.3.2 DP meets HE 

If we focus now on the use of only HE instead of general SMPC, the same considerations as in 
SMPC follow. We can actually combine DP mechanisms with HE in a similar way [PAHWM18, GSSG22] 

by adding noise to the inputs before encryption, also during the homomorphic computation, or even 
directly to the outputs before decryption. However, more recently, some works are exploring more 
sophisticated combinations of both PET technologies. Modern HE schemes are based on the RLWE 
and LWE problems (see Section 3.1.1 for more details), which implicitly add noise during the 
encryption phase. In [Ogilvie23], the author takes advantage of this internal noise used for encryption, 

and studies whether approximate HE natively provides DP-guarantees; hence aiming at avoiding 
the addition of an extra noise component during computation. 

While in many HE schemes this noise is removed during decryption, some schemes like CKKS are 
approximate when doing homomorphic operations, so the result is not exact but slightly perturbed. 
Unfortunately, this HE noise is usually correlated with the computed operations and the encrypted 
data itself, requiring a careful analysis on how the noise distribution evolves internally [CCHMOP22]. 

Even so, [Ogilvie23] does show how approximate HE is able to provide some DP-guarantees for 

homomorphic ridge regression training using gradient descent. Other works [SZSSG23] seek to relax 

the accuracy of the homomorphic computation with the aim of not only improving the runtime 
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performance, but also providing DP-guarantees. Moreover, DP has been used in [LMSS22] as a tool 

to harden the security of approximate HE under certain security model assumptions [LM21]. 

 

4.3.3 Types of assumptions in DP 

Traditional encrypted computation schemes such as secret sharing or homomorphic encryption do 

not reveal more information than their respective outputs under their security assumptions. If even 

the exact output of the intended algorithm could reveal too much, one can combine encrypted 

computation with statistical privacy, such as differential privacy, computational differential privacy 

[MPRV09], or one of its variants. As most encrypted computation strategies are only computationally 

secure, i.e., they assume adversaries have bounded computational power, such combinations 

usually can only achieve computational differential privacy rather than the information-theoretical 

notion originally proposed by Dwork [DR14]. 

 

4.4 Verification Techniques: Zero Knowledge Proofs 

In recent years, many new ZKP systems have been proposed to verify arbitrary computations. Since 

a large number of state-of-the-art ZKP systems were designed to optimize blockchains that process 

a huge number of transactions, the blockchain infrastructure was naturally reused to organize 

verifiable federated learning in a plenty of works [QUG+22]. Such blockchain-based approaches are 

resistant to participant dropout and suitable for anonymous settings, which are often important 

properties in large-scale systems where anyone can create an account.  

Nevertheless, in a cross-silo FL setting such as we consider in the TRUMPET project [PRP+23], 

blockchain-based infrastructures become computationally inefficient due to the replication of 

calculations. In addition, blockchain-based FL inherits existing security issues of blockchain 

[RJVHM23]: 51% attacks, forking attacks, double spending, and reentrance attacks on the smart 

contract, amongst others.  On the other hand, many machine learning algorithms can be formulated 

in terms of aggregation operations and various secure aggregation protocols have been developed 

to satisfy not only the requirements of privacy but also the specific challenges of security [MOBC23]. 

Authors pay special attention to the verification of both server (aggregator) and data owner actions, 

e.g., Brunetta et al. [BTLBM21] developed a non-interactive secure aggregation protocol that 

includes the verification of the result to prevent malicious server attacks. This protocol was later 

improved in terms of communication cost by Tsaloli et al. [TLBBM21] who proposed a DEVA 

approach based on the Σ-Protocol for performing proofs. At the same time, several protocols which 

rely on ZKP schemes were proposed to handle malicious users. Sabater et al. proposed a verifiable 

secure aggregation protocol [SBR22] based on Σ-Protocols [AC20] that enables users to prove the 

correctness of their computations. Lycklama et al. proposed the ROFL [LBVKH23] approach with a 

comparison of Bulletproof [BBBPWM18] and Groth16 [Groth16] schemes for the construction of norm 

bounds using range proofs. Bell et al. in [BGLLMRY23] later developed a more efficient protocol 

based on Schnorr proofs and Bulletproof scheme.   

Although these works are carried out in the similar research direction, they do not focus on the 

specific aspects of our cross-silo FL setting where there are a fixed number of identified parties.   In 
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the TRUMPET project we should take into account the possibility of collusion between any 

participants, large amounts of data, the timeline of providing proofs, the fact the identities or parties 

is known and other features that are often omitted when considering only the aggregation process.   

There is a separate line of research dedicated to ZKPs in the scope of the ML-as-a-Service 

paradigm. This paradigm enables computationally weak clients to train ML models or to compute 

predictions via powerful cloud infrastructures. Verification of computations allows to guarantee the 

integrity both for the training and inference stages. Authors develop various techniques to improve 

verification process efficiency, for example, Feng et al. in [FQZDZ21] proposed a new quantization 

algorithm to reduce the number of constraints to prove, Huang et al. in [HWCSHX22] applied random 

sampling to reduce training proof cost, Kang et al. [KHSS22] described a novel arithmetization 

optimization for DNN inferences. 

Nevertheless, such approaches cannot be directly applied in FL settings. In the ML-as-a-Service 

paradigm, clients share their data with an untrusted party, expecting to receive a proof that the model 

is being trained/used correctly. In contrast, in FL, the data remains on the user’s side and the model 

is trained between clients. However, optimizations developed in the scope of this paradigm, can 

often be reused in an FL setting.    
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5 Conclusions 

This document has reported the final results of the work done during tasks T2.1 and T2.2 of WP2. 

Regarding T2.1, a detailed list of AI models and aggregation methods has been presented. For the 
selection of the best models and methods, we have taken into account the requirements elicited from 
the TRUMPET use cases. Next, a review of the most suitable FL frameworks for the implementation 
of the TRUMPET platform has been presented. 

Regarding T2.2, a description of the state of the art of modern PET methods has been included, 
where we have paid special attention to their individual privacy guarantees, available software tools 
for implementation, and adequacy for the FL setting. Specifically, the list of studied PET methods 
comprised Homomorphic Encryption, Secure Multi-Party Computation, Private Coded Distributed 
Computing, Differential Privacy and Zero-Knowledge Proofs. 

Finally, the document has delved into the combination of several PET methods as a means to better 
fulfil the privacy requirements elicited in D1.1 and D1.3. The outcomes reported here will be used as 
main inputs for the selection of the methods to be implemented and combined in tasks T2.3, T2.4 
and T2.5 of WP2, as well as the determination of the FL framework which will underpin the 
development of the TRUMPET platform in WP4. They will be also used in the tasks of WP3 for the 
study of the existing privacy leaks, and the application of the privacy metric. 
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